Загрузка...

Основные типы базовых логических элементов


Цифровые микросхемы предназначены для обработки, преобразования и хранения цифровой информации. Выпускаются они сериями. Внутри каждой серии имеются объединенные по функциональному признаку группы устройств: логические элементы, триггеры (автоматы с памятью), счетчики, элементы арифметических устройств (выполняющие различные математические операции) и т. д. Чем шире функциональный состав серии, тем большими возможностями может обладать цифровой автомат, выполненный на базе микросхем данной серии. Микросхемы, входящие в состав каждой серии, имеют единое конструктивно-технологическое исполнение, единое напряжение питания, одинаковые уровни сигналов логического 0 и логической 1. Все это делает микросхемы одной серии совместимыми.

Основой каждой серии цифровых микросхем является базовый логический элемент. Как правило, базовые логические элементы выполняют операции И—НЕ либо ИЛИ—НЕ и по принципу построения делятся на следующие основные типы: элементы диодно-транзисторной логики (ДТЛ), резистивно-транзнсторной логики (РТЛ), транзисторно-транзисторной логики (ТТЛ), эмиттерно-связанной транзисторной логики (ЭСТЛ), микросхемы на так называемых комплементарных МДП структурах (КМДП). Элементы КМДП цифровых микросхем используют пары МДП- транзисторов (со структурой металл — диэлектрик—полупроводник) — с каналами р- и п- типов. Базовые эле­менты остальных типов выполнены на биполярных транзисторах.

clip_image002clip_image004В радиолюбительской практике наибольшее распространение получили микросхемы ТТЛ серии К155 и КМДП (серий К176 и К561). На рис. 6 показана схема базового логического элемента И—НЕ ТТЛ. На входе элемента включен многоэмиттерный транзистор VT1. Если на все его эмиттеры подать напряжения высокого уровня, то эмиттерный переход транзистора окажется закрытым. При этом ток, протекающий через резистор R1 и коллекторный переход транзистора VT1, откроет транзистор VT2. Падение напряжения на резисторе R3 будет достаточным для открывания транзистора VT5. Напряжение на коллекторе транзистора VT2 таково, что транзистор VT3 закрыт, соответственно закрыт и транзистор VT4. В результате на выходе элемента появится напряжение низкого уровня, соответствующее логическому 0. Если же хоть на один из входов элемента подать напряжение низкого уровня, то эмиттерный переход транзистора VT1 откроется, а транзисторы VT2 и VT5 будут закрыты. Транзистор VT3 откроется за счет тока, протекающего через резистор R2, и войдет в режим насыщения. Соответственно откроется транзистор VT4, и на .выходе элемента появится напряжение высокого уровня, соответствующее логической 1. Следовательно, рассмотренный элемент выполняет функцию И—НЕ.

В состав микросхем серий ТТЛ входит также логический элемент И—НЕ без коллекторной нагрузки в выходном каскаде. Это так называемый элемент И—НЕ с открытым коллектором. Он предназначен для работы на внешнюю нагрузку, в качестве которой могут быть использованы электромагнитные реле, индикаторные приборы и т. д.

Структура КМОП(Комплеметарный Метал-Окисел-Проводник) является идеальным переключателем напряжения. Такой переключатель содержит два МОП транзистора с каналами р- и п- типов. При подаче на вход переключателя напряжения высокого уровня открывается п- канальный транзистор и закрывается р- канальный. На рис. 7 изображены схемы базовых элементов И—НЕ (о) и ИЛИ—НЕ (б) микросхем КМОП. Напряжение низкого уровня (логический 0) будет на выходе элемента И—НЕ только при одновременной подаче напряжений высокого уровня (логических 1) на все входы X1—Х3. Если напряжение хотя бы на одном из входов (например, X1) будет низкого уровня, то запрется п- канальный транзистор VT6, и откроется р- канальный транзистор VT1, через канал которого выход элемента подключается к источнику питания. Таким образом, на выходе будет напряжение высокого уровня, соответствующее логической 1.

clip_image006Для реализации базового логического элемента ИЛИ—НЕ на КМОП структурах участки схемы, содержащие последовательно и параллельно вклю­ченные транзисторы, следует поменять местами (рис. 7,6).

Прежде чем перейти к детальному рассмотрению наиболее распространенных серий микросхем цифровых устройств на их базе, остановимся на основных параметрах логических элементов. К ним относятся напряжение источ­ника питания, уровни напряжений логического 0 и логической 1, нагрузочнаяспособность, помехоустойчивость и быстродействие, потребляемая мощность.

Микросхемы ТТЛ рассчитаны на напряжение источника питания 5В±10%. Большая часть микросхем на КМОП структурах устойчиво работает при напряжении питания 3—15В, некоторые — при напряжении 9В±10%. Уровни логических 0 и 1 должны отличаться возможно больше. Различают пороговое напряжение логической еденицы U1пор — наименьшее напряжение высокого уровня на входе микросхемы, при котором напряжение на выходе изменяется от уровня логического 0 до уровня логической 1, а также пороговое напряжение логического нуля U°пop — наибольшее напряжение низкого уровня на входе микросхемы, при котором напряжение на выходе изменяется от уровня логической 1 до уровня логического 0. Для микросхем ТТЛ серий U1nop=2,4В; U°пор=0,4В.

Напряжение низкого и высокого уровней на выходе микросхем ТТЛ U1вых?2,4 В; U°вых?0,4 В. Для микросхем на КМДП структурах U1пор?0,7Uпит; U°пор?0,3Uпит. В то же время отклонения выходных напряжений U0вых и U1вых от нулевого значения и напряжения источника питания соответственно достигают всего нескольких десятков милливольт.

Способность элемента работать на определенное число входов других элементов без дополнительных устройств согласования характеризуется нагрузочной способностью. Чем выше нагрузочная способность, тем меньшее число элементов может понадобиться при реализации цифрового устройства. Однако при повышении нагрузочной способности другие параметры микросхем ухудшаются: снижаются быстродействие и помехоустойчивость, возрастает потребляемая мощность. В связи с этим в составе различных серий микросхем есть так называемые буферные элементы с нагрузочной способностью, в несколько раз большей, чем у основных элементов. Количественно нагрузочная способность оценивается числом единичных нагрузок, которые можно одновременно подключить к выходу микросхемы. В свою очередь единичной нагрузкой является вход основного логического элемента данной серии. Коэффициент разветвления по выходу для большинства логических элементов серий ТТЛ составляет 10, а для микросхем серий КМДП — до 100.

Помехоустойчивость базовых логических элементов оценивают в статическом и динамическом режимах. При этом статическая помехоустойчивость определяется уровнем напряжения, подаваемого на вход элемента относительно уровней логических 0 и 1, при котором состояние на выходе схемы не изменяется. Для элементов ТТЛ статическая помехоустойчивость составляет не менее 0,4 В, а для микросхем серий КМДП не менее 30% напряжения питания. Динамическая помехоустойчивость зависит от формы и амплитуды сигнала помехи, а также от скорости переключения логического элемента и его статической помехоустойчивости.

Динамические параметры базовых элементов оценивают, в первую очередь, быстродействием. Количественно быстродействие можно характеризовать предельной рабочей частотой, т. е. максимальной частотой переключения триггера, выполненного на этих базовых элементах. Предельная рабочая частота микросхем ТТЛ серии К155 составляет 10 МГц, а микросхем серий К176 и К561 на КМДП структурах — лишь 1 МГц. Быстродействие определяется так же, как среднее время задержки распространения сигнала tзд.р.ср=0,5(t1,0зд.р+t0,1зд.р), где t1,0зд.р и t0,1зд.р — времена задержки распространения сигнала при включении и выключении.

Среднее время задержки распространения сигнала является более универсальным параметром микросхем, так как, зная его, можно рассчитать быстродействие любой сложной логической схемы суммированием tзд.р.ср для всех последовательно включенных микросхем. Для микросхем серии К155 tзд.р.ср составляет около 20 нс, а для микросхем серии К176 — 200 нс.

clip_image008

clip_image010

Потребляемая микросхемой мощность в статическом режиме оказывается различной при уровнях логического нуля (Р0) и логической единицы на выходе (Р1). В связи с этим измеряют среднюю мощность потребления Рср = (Р0-P1)/2. Статическая средняя мощность потребления базовых элементов серии К155 составляет несколько десятков милливатт, а у элементов серий К176 и К561 она более чем в тысячу раз меньше. Следовательно, при необходимости построения цифровых устройств с малым потреблением целесообразно использовать микросхемы на КМОП структурах. Однако следует учитывать, что при работе в динамическом режиме мощность, потребляемая логическими элементами, возрастает. Поэтому помимо Рср задается также мощность Рдин, измеряемая на максимальной частоте переключении. Необходимо иметь в виду, что с повышением быстродействия мощность, потребляемая микросхемой, увеличивается.

Важнейшим показателем микросхем является надежность. Ее характеризуют интенсивностью частоты отказов. Средняя интенсивность отказов микросхем со средним уровнем интеграции составляет c=1*10-7 1/ч. Надежность цифровых устройств на микросхемах значительно превышает надежность аналогичных устройств на дискретных элементах.

ТТЛШ отличается от ТТЛ тем, что в цепь база-коллектор включается диод «Шотки». Диод обеспечивает не насыщение транзистора, что обеспечивает большую скорость переключения. Как только Uб станет > Uк на 0,2В ток начнет протекать от базы к коллектору минуя транзистор. Задержки ТТЛ=10нс, а ТТЛШ =3нс (для одного вентиля на транзисторе). К отличиям ТТЛШ от ТТЛ относятся: применение диодов и транзисторов Шотки; применение во входном каскаде диодов вместо многоэмитерного транзистора. Параметры элементы совпадают с ТТЛ.

Логический элемент ЭСТЛ(ЭСЛ- эмитарно-связаная логика)имеет наибольшее быстродействие достигающего субнаносекудного диапозона особеность ЭСЛ в том, что он основан на дифференциальном переключателе тока. Высокое быстродействие достигается за счет работы всех транзисторов в активном режиме, что позволяет исключить задержку с рассасыванием зарядов. Параметры серии: Uпит= -5.2В +/-5%, U0=-0.9В,U1= -1.65В, I=0.5mА,Iвых=32mA, tзд=1…5нс.

Логические элементы 6500 на основе арснида галия. Представляют дальнейшее развитие элементов серии ЭСЛ. отсюда параметры их схожи. Базируется на МЕП транзисторе (МЕтал-Полупроводник) с затвором Шотки. Транзистор представляет собой полевой транзистор с управляющим переходом МЕП. Особености арснида галия в высокой подвижности носителей заряда, отсюда и высокое быстродействие.

Загрузка...