Надежность функционирования вычислительных систем. Вариант 45.


Надежность функционирования вычислительных систем
Модульный контроль N 1
Вариант 45
На испытания поставлены 10 тыс. шт. элемен-тов одного типа. За первые 1000 часов вышли из строя 7 элементов. За каждые следующие 1000 часов выхо-дили из строя соответственно 5, 5, 6, 4, 5 элементов.
1.Построить график интенсивности отказов.
2.Определить среднюю величину интенсивности отказов.
3.Определить среднее время безотказной работы.
4.Определить время, в течение которого вероятность
безотказной работы не ниже 0,94.
5.Определить вероятность безотказной работы устройства с законом распределения Вейбулла с коэф. асимметрии и эксцесса равным 1,45 за период, определенный в задании 4.
6.Определить вероятность того, что при экспоненци-альном законе распределения за период, определенный в задании 4 произойдет не более 2-х отказов.
7. Если при экспоненциальном законе распределения Tср = 1000 час, то вероятность отказа через 800 час. Может быть равна: а)0,3; б)0,4; в)0,5; г)0,6.
Надежность функционирования вычислительных систем
Модульный контроль N 1
Вариант 46
На испытания поставлены 10 тыс. шт. элемен-тов одного типа. За первые 1000 часов вышли из строя 7 элементов. За каждые следующие 1000 часов выхо-дили из строя соответственно 5, 5, 6, 4, 5 элементов.
1.Построить график интенсивности отказов.
2.Определить среднюю величину интенсивности отказов.
3.Определить среднее время безотказной работы.
4.Определить время, в течение которого вероятность
безотказной работы не ниже 0,95.
5.Определить вероятность безотказной работы устройства с законом распределения Вейбулла с коэф. асимметрии и эксцесса равным 1,46 за период, определенный в задании 4.
6.Определить вероятность того, что при экспоненци-альном законе распределения за период, определенный в задании 4 произойдет не более 3-х отказов.
7. Интенсивность отказов для ИМС определяется:
а)расчетным путем; б)статистическим путем; в)любым из путей а) и б); г)другим путем.

Надежность функционирования вычислительных систем
Модульный контроль N 1
Вариант 47
На испытания поставлены 10 тыс. шт. элемен-тов одного типа. За первые 1000 часов вышли из строя 7 элементов. За каждые следующие 1000 часов выхо-дили из строя соответственно 5, 5, 6, 4, 5 элементов.
1.Построить график интенсивности отказов.
2.Определить среднюю величину интенсивности отказов.
3.Определить среднее время безотказной работы.
4.Определить время, в течение которого вероятность
безотказной работы не ниже 0,96.
5.Определить вероятность безотказной работы устройства с законом распределения Вейбулла с коэф. асимметрии и эксцесса равным 1,47 за период, определенный в задании 4.
6.Определить вероятность того, что при экспоненци-альном законе распределения за период, определенный в задании 4 произойдет менее 3-х отказов.
7.Выражение ? = f(t)/p(t) верно: а)для экспоненциально-го закона распределения; б)для закона распределения Вейбулла; в)для любого закона распределения; г)неверно.

Надежность функционирования вычислительных систем
Модульный контроль N 1

Вариант 48
На испытания поставлены 10 тыс. шт. элемен-тов одного типа. За первые 1000 часов вышли из строя 7 элементов. За каждые следующие 1000 часов выхо-дили из строя соответственно 5, 5, 6, 4, 5 элементов.
1.Построить график интенсивности отказов.
2.Определить среднюю величину интенсивности отказов.
3.Определить среднее время безотказной работы.
4.Определить время, в течение которого вероятность
безотказной работы не ниже 0,97.
5.Определить вероятность безотказной работы устройства с законом распределения Вейбулла с коэф. асимметрии и эксцесса равным 1,48 за период, определенный в задании 4.
6.Определить вероятность того, что при экспоненци-альном законе распределения за период, определенный в задании 4 произойдет не менее 3-х отказов.
7. Перечислите качественные и количественные параметры, характеризующие надежность изделия.
Надежность функционирования вычислительных систем
Модульный контроль N 1
Вариант 49
На испытания поставлены 10 тыс. шт. элемен-тов одного типа. За первые 1000 часов вышли из строя 7 элементов. За каждые следующие 1000 часов выхо-дили из строя соответственно 5, 5, 6, 4, 5 элементов.
1.Построить график интенсивности отказов.
2.Определить среднюю величину интенсивности отказов.
3.Определить среднее время безотказной работы.
4.Определить время, в течение которого вероятность
безотказной работы не ниже 0,98.
5.Определить вероятность безотказной работы устройства с законом распределения Вейбулла с коэф. асимметрии и эксцесса равным 1,49 за период, определенный в задании 4.
6.Определить вероятность того, что при экспоненци-альном законе распределения за период, определенный в задании 4 произойдет более 2-х отказов.
7. С течением времени интенсивность отказов: а)увели-чивается; б)уменьшается; в)не изменяется; г)др. ответ.