В таблице простых чисел, то есть таких, которые делятся только на 1 и на себя, числа 7, 11 и 13 расположены рядом (см. таблицу простых чисел на стр. 363). Их произведение равно:
7 ∙ 11 ∙ 13=1001 = 1000 + 1.
Заметим пока, что 1000 + 1 делится и на 7, и на 11, и на 13. Далее, если любое трехзначное число умножить на 1001, то произведение запишется такими же цифрами, как и множимое, только повторенными два раза.
Пусть
— какое-либо трехзначное число (а, Ь и с — цифры этого числа). Умножим его на 1001:
Следовательно, все числа вида аЬсаЬс делятся на 7, на 11 и на 13. В частности, делится на 7, 11 и 13 число 999 999, или, иначе, 1000 000—1.
Указанные закономерности позволяют свести решение вопроса о делимости многозначного числа на 7 или на 11,
или на 13 к делимости на них некоторого другого числа — не более чем трехзначного.
Требуется, положим, определить, делится ли число 42 623 295 на 7, 11 и 13. Разобьем данное число справа налево на грани по 3 цифры. Крайняя левая грань может и не иметь трех цифр. Представим теперь данное число в гаком виде:
42 623 295 = 295 + 628 ∙ 1000 + 42 ∙ 1 000 000,
или (аналогично тому, как это мы делали при рассмотрении признака делимости на 11):
42 623 295 = 295 + 623 (1000 + 1 —1) + 42(1000000 — 1 + 1) = (295 — 623 + 42) + [623 (1000 + 1) + 42 (1000 000 — 1)].
Число в квадратной скобке обязательно делится и на 7, и на 11, и на 13. Значит, делимость испытуемого числа на
7, 11 и 13 полностью определяется делимостью числа, заключенного в первой круглой скобке.
Рассматривая каждую грань испытуемого числа как самостоятельное число, можно высказать следующий объединенный признак делимости сразу на три числа, 7, 11 и 13:
Вели разность сумм граней данного числа, взятых через одну, делится на 7 или на 11, или на 13, то и данное число делится соответственно на 7 или на 11, или на 13.
Вернемся к числу 42 623 295. Определим, на какое из чисел 7, 11 или 13 делится разность сумм граней данного числа:
(295 + 42)—623 = —286.
Число 286 делится на 11 и на 13, а на 7 оно не делится. Следовательно, число 42 623 295 делится на 11 и на 13, но на 7 не делится.
Очевидно, что делимость на 7, 11 и 13 четырех-, пяти — и шестизначных чисел, то есть чисел, разбивающихся всего лишь на 2 грани (практически более частый случай), определяется делимостью на 7, 11 и 13 разности граней данного числа. Так, например, легко установить, что 29 575 делится на 7 и на 13, но не делится на 11. Действительно, разность граней равна
575—29 = 546,
а число 546 делится на 7 и на 13 и не делится на 11.
Задача. Устанавливая объединенный признак делимости на 7, 11 и 13, мы оперировали числом, разбивавшимся на 3 грани. Проведите обоснование этого признака на примере числа, разбивающегося на 4 грани по 3 цифры справа налево.