315. ОБЪЕДИНЕННЫЙ ПРИЗНАК ДЕЛИМОСТИ НА 7, 11 И 13


В таблице простых чисел, то есть таких, которые делятся только на 1 и на себя, числа 7, 11 и 13 расположены рядом (см. таблицу простых чисел на стр. 363). Их произведение равно:

7 ∙ 11 ∙ 13=1001 = 1000 + 1.

Заметим пока, что 1000 + 1 делится и на 7, и на 11, и на 13. Далее, если любое трехзначное число умножить на 1001, то произведение запишется такими же цифрами, как и множимое, только повторенными два раза.

Пусть
 — какое-либо трехзначное число (а, Ь и с — цифры этого числа). Умножим его на 1001:

Следовательно, все числа вида аЬсаЬс делятся на 7, на 11 и на 13. В частности, делится на 7, 11 и 13 число          999 999, или, иначе, 1000 000—1.

Указанные закономерности позволяют свести решение вопроса о делимости многозначного числа на 7 или на 11,

или на 13 к делимости на них некоторого другого числа — не более чем трехзначного.

Требуется, положим, определить, делится ли число 42 623 295 на 7, 11 и 13. Разобьем данное число справа налево на грани по 3 цифры. Крайняя левая грань может и не иметь трех цифр. Представим теперь данное число в гаком виде:

42 623 295 = 295 + 628 ∙ 1000 + 42 ∙ 1 000 000,

или (аналогично тому, как это мы делали при рассмотрении признака делимости на 11):

42 623 295 = 295 + 623 (1000 + 1 —1) + 42(1000000 — 1 + 1) = (295 — 623 + 42) + [623 (1000 + 1) + 42 (1000 000 — 1)].

Число в квадратной скобке обязательно делится и на 7, и на 11, и на 13. Значит, делимость испытуемого числа на

7, 11  и  13 полностью определяется делимостью  числа, заключенного в первой круглой скобке.

Рассматривая каждую грань испытуемого числа как самостоятельное число, можно высказать следующий объединенный признак делимости сразу на три числа, 7, 11 и  13:

Вели разность сумм граней данного числа, взятых через одну, делится на 7 или на 11, или на 13, то и данное число делится соответственно на 7 или на 11, или на 13.

Вернемся к числу 42 623 295. Определим, на какое из чисел 7, 11 или 13 делится разность сумм граней данного числа:

(295 + 42)—623 = —286.

Число 286 делится на 11 и на 13, а на 7 оно не делится. Следовательно, число 42 623 295 делится на 11 и на 13, но на 7 не делится.

Очевидно, что делимость на 7, 11 и 13 четырех-, пяти — и шестизначных чисел, то есть чисел, разбивающихся всего лишь на 2 грани (практически более частый случай), определяется делимостью на 7, 11 и 13 разности граней данного числа. Так, например, легко установить, что 29 575 делится на 7 и на 13, но не делится на 11. Действительно, разность граней равна

575—29 = 546,

а число 546 делится на 7 и на 13 и не делится на 11.

Задача. Устанавливая объединенный признак делимости на 7, 11 и 13, мы оперировали числом, разбивавшимся на 3 грани. Проведите обоснование этого признака на примере числа, разбивающегося на 4 грани по 3 цифры справа налево.

Загрузка...